

Zytel® HTNLTFR52G30NH BL662

HIGH PERFORMANCE POLYAMIDE RESIN

Zytel® HTN high performance polyamide resins feature high retention of properties upon exposure to elevated temperature, to high moisture, and to harsh chemical environments. Polymer families and grades of Zytel® HTN are tailored to optimize performance as well as processability.

Typical applications with Zytel® HTN include demanding applications in the automotive, electrical and electronics, domestic appliances, and construction industries.

Zytel® HTNLTFR52G30NH BL662 is a 30% glass reinforced, flame retardant high performance polyamide resin developed for laser welding applications. It is also a PPA resin and it uses a non-halogenated flame retardant.

Product information

Resin Identification Part Marking Code Part Marking Code ISO designation	>PA6T/66-GF30FR(40)<		ISO 1043 ISO 11469 SAE J1344 1CF1G,S10-110
Rheological properties	dry/cond.		
Moulding shrinkage, parallel Moulding shrinkage, normal	0.3/- 0.8/-	% %	ISO 294-4, 2577 ISO 294-4, 2577
Typical mechanical properties	dry/cond.		
Tensile modulus Tensile stress at break, 5mm/min Tensile strain at break, 5mm/min Flexural modulus Flexural strength Charpy impact strength, 23°C Charpy impact strength, -30°C Charpy notched impact strength, -30°C Poisson's ratio	10800/10400 148/125 2.2/2.2 10500/10000 220/190 46/40 40/40 6/6 6/5 0.34/0.34	MPa MPa % MPa MPa kJ/m² kJ/m² kJ/m²	ISO 527-1/-2 ISO 527-1/-2 ISO 527-1/-2 ISO 178 ISO 178 ISO 179/1eU ISO 179/1eU ISO 179/1eA ISO 179/1eA
Thermal properties	dry/cond.		
Melting temperature, 10 °C/min Melting temperature, first heat Glass transition temperature, 10 °C/min Temperature of deflection under load, 1.8 MPa Coeff. of linear therm. expansion, parallel, -40-23 °C Coefficient of linear thermal expansion	310/* 310/* 90/45 283/* 21/* 25/*	°C °C °C °C E-6/K E-6/K	ISO 11357-1/-3 ISO 11357-1/-3 ISO 11357-1/-3 ISO 75-1/-2 ISO 11359-1/-2
(CLTE), parallel Coeff. of linear therm. expansion, parallel, 55-160°C Coeff. of linear therm. expansion, normal, -40-23°C Coefficient of linear thermal expansion (CLTE),	27/* 57/* 68/*	E-6/K E-6/K E-6/K	ISO 11359-1/-2 ISO 11359-1/-2 ISO 11359-1/-2
normal Coeff. of linear therm. expansion, normal, 55-160°C RTI, electrical, 0.4mm RTI, electrical, 1.5mm RTI, electrical, 3.0mm	118/* 140 140 140	E-6/K °C °C °C	ISO 11359-1/-2 UL 746B UL 746B UL 746B

Printed: 2025-05-30 Page: 1 of 3

Revised: 2024-11-07 Source: Celanese Materials Database

Zytel® HTNLTFR52G30NH BL662 HIGH PERFORMANCE POLYAMIDE RESIN

RTI, impact, 1.5mm	115	°C	UL 746B
RTI, impact, 3.0mm	120	°C	UL 746B
RTI, strength, 1.5mm	125/*	°C	UL 746B
RTI, strength, 3.0mm	130	°C	UL 746B

dry/cond.

dry/cond.

dry/cond.

Flammability

Burning Behav. at 1.5mm nom. thickn.	V-0/*	class	IEC 60695-11-10
UL recognition	yes/*		UL 94
Burning Behav. at thickness h	V-0/*	class	IEC 60695-11-10
Thickness tested	0.4/*	mm	IEC 60695-11-10
UL recognition	yes/*		UL 94

Electrical properties

Comparative tracking index	600/-		IEC 60112
Electric Strength, Short Time, 2mm	27/-	kV/mm	IEC 60243-1

Physical/Other properties

Humidity absorption, 2mm	1.6/*	%	Sim. to ISO 62
Water absorption, 2mm	3.9/*	%	Sim. to ISO 62
Density	1450/-	kg/m³	ISO 1183

Injection

Drying Recommended	yes
Drying Temperature	100 °C
Drying Time, Dehumidified Dryer	6-8 h
Processing Moisture Content	≤0.1 %
Min. melt temperature	320 °C
Max. melt temperature	325 °C
Min. mould temperature	90 °C
Max. mould temperature	130 °C

Characteristics

Processing Injection Moulding

Flame retardant, Non-halogenated/Red phosphorous free flame retardant Additives

Special characteristics Flame retardant

Additional information

Injection molding For molding machine components, use corrosion resistant and wear resistant

steel. For details please contact our representative. Limit the residence time of the resin in the machine. Use proper protective equipment and adequate

ventilation.

Printed: 2025-05-30 Page: 2 of 3

Revised: 2024-11-07 Source: Celanese Materials Database (+) 18816996168 Ponciplastics.com

Zytel® HTNLTFR52G30NH BL662 HIGH PERFORMANCE POLYAMIDE RESIN

Printed: 2025-05-30 Page: 3 of 3

Revised: 2024-11-07 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.